Sentiment Analysis: From Psychometrics to Psychopolitics

Authors

DOI:

https://doi.org/10.17231/comsoc.39(2021).2797

Keywords:

emotions, sentiment analysis, psychopolitics, big data, surveillance

Abstract

The data about our affects, the so-called emotional data, constitute nowadays a valuable commodity, collected and marketed by digital communication platforms. Among the interested in obtaining it are financial and political corporations that base their decisions on information about network user’s affects. There are different ways to generate emotional data, one of which is the sentiment analysis. This article addresses some characteristics of this tool, clarifying its operation and the psychometric knowledges that constitute it. Sentiment analysis is understood not only as a tool for detecting affects, but also for emotional production. It is in this sense that it is possible to outline it — beyond a psychometric instrument — as a psychopolitical apparatus, a technique that operates by instrumentalizing emotions for a capitalization beyond the individual. In this sense, concepts such as “control society” (Deleuze, 1992), “confessional society” (Bauman, 2012/2014), and the very notion of “psychopolitics” (Han, 2014/2014b), are useful to understand aspects of emotional production based on new communication technologies. This article, therefore, aims to contribute to the understanding of an important factor which is still somewhat neglected in studies on big data and surveillance: the monitoring and production of affects as a form of subjective control.

Downloads

Download data is not yet available.

References

Andrade, O. (2017). Manifesto Antropófago e outros textos. Companhia das Letras. (Original work published 1928)

Andrejevic, M. (2011). The work that affective economics does. Cultural Studies, 25(4–5), 604–620. https://doi.org/10.1080/09502386.2011.600551

Bauman, Z. (2014). Vigilância líquida: Diálogos com David Lyon (C. A. Medeiros, Trad.). Zahar. (Trabalho original publicado em 2012)

Bentham, J. (2019). O panóptico (T. Tadeu, Trad.). Autêntica. (Trabalho original publicado em 1791)

Bollen, J., Pepe, A., & Mao, H. (2011). Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. In L. Adamic, R. Baeza-Yates, & S. Counts (Eds.), Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media (pp. 450–453). AAAI Press.

Bosco, C., Patti, V., & Bolioli, A. (2013). Developing corpora for sentiment analysis: The case of irony and senti-tut. IEEE Intelligent Systems, 28(2), 55–63. https://doi.org/10.1109/MIS.2013.28

Ceron, A., Curini, L., & Iacus, S. M. (2015). Using sentiment analysis to monitor electoral campaigns: Method matters - evidence from the United States and Italy. Social Science Computer Review, 33(1), 3–20. https://doi.org/10.1177/0894439314521983

Deleuze, G. (1992). Conversações (P. P. Pélbart, Trad.). Editora 34.

Deng, S., Sinha, A. P., & Zhao, H. (2017). Resolving ambiguity in sentiment classification: The role of dependency features. ACM Transactions on Management Information Systems (TMIS), 8(2–3), 1–13. https://doi.org/10.1145/3046684

Fathullah, A., & Willis, K. S. (2018). Engaging the senses: The potential of emotional data for participation in urban planning. Urban Science, 2(4), 98. https://doi.org/10.3390/urbansci2040098

Feitosa, C. (2018, 5 de outubro). Por uma psicopolítica de resistência. Cult. https://revistacult.uol.com.br/home/por-uma-psico-politica-de-resistencia/

Ferrara, E., & Yang, Z. (2015). Measuring emotional contagion in social media. PLOS ONE, 10(11),1–14. https://doi.org/10.1371/journal.pone.0142390

Foucault, M. (2014). Vigiar e punir: nascimento da prisão (P. E. Duarte, Trad.). Leya. (Trabalho original publicado em 1975)

Gomes, H. J. C. (2012). Text mining: Análise de sentimentos na classificação de notícias [Dissertação de mestrado, Universidade Nova de Lisboa]. Repositório da Universidade Nova de Lisboa. http://hdl.handle.net/10362/9182

Gonçalves, P., Dores, W., & Benevenuto F. (2012). PANAS-t: Uma escala psicométrica para medição de sentimentos no Twitter. In 1st Brazilian Workshop on Social Network Analysis and Mining (Brasnam). http://www2.sbc.org.br/csbc2012/anais_csbc/eventos/brasnam/artigos/BRASNAM%20-%20PANAS-t%20Uma%20Escala%20Psicometrica%20para%20Medicao%20de%20Sentimentos%20no%20Twitter.pdf

Haggerty, K. D., & Ericson R. V. (2000). The surveillant assemblage. British Journal of Sociology, 51(4), 605–622. https://doi.org/10.1080/00071310020015280

Han, B.-C. (2014a). A sociedade da transparência (M. S. Pereira, Trad.). Relógio d’Água. (Trabalho original publicado em 2012)

Han, B.-C. (2014b). Psicopolítica (M. S. Pereira Trad.). Relógio d’Água. (Trabalho original publicado em 2014)

Heins, M. (2013). The brave new world of social media censorship. Harvard Law Review, 127(8), 325–330. https://harvardlawreview.org/2014/06/the-brave-new-world-of-social-media-censorship/

Hernández-Farías, I., Benedí, J. M., & Rosso, P. (2015). Applying basic features from sentiment analysis for automatic irony detection. In R. Paredes, J. S. Cardoso, & X. M. Pardo (Eds.), 7th Iberian Conference on Pattern Recognition and Image Analysis (pp. 337–344). Springer. https://doi.org/10.1007/978-3-319-19390-8_38

Hintz, A. (2015). Social media censorship, privatized regulation and new restrictions to protest and dissent. In L. Dencik & O. Leistert (Eds.), Critical perspectives on social media and protest: Between control and emancipation (pp. 109–126). Rowman & Littlefield. http://orca.cf.ac.uk/id/eprint/87265

Hur, D. U. (2013). Da biopolítica à noopolítica: Contribuições de Deleuze. Lugar Comum, (40), 201–215.

Illouz, E. (2018). Emotions as commodities: Capitalism, consumption and authenticity. Routledge.

Islam, M. R. & Zibran, M. F. (2017). Leveraging automated sentiment analysis in software engineering. In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR) (pp. 203–214). IEEE. https://doi.org/10.1109/MSR.2017.9

Khoo, C. S. & Johnkhan, S. B. (2018). Lexicon-based sentiment analysis: Comparative evaluation of six sentiment lexicons. Journal of Information Science, 44(4), 491–511. https://doi.org/10.1177/0165551517703514

Levin, S. (2017, 1 de maio). Facebook told advertisers it can identify teens feeling ‘insecure’ and ‘worthless’. The Guardian. https://www.theguardian.com/technology/2017/may/01/facebook-advertising-data-insecure-teens

Liu, B. (2012). Sentiment analysis and opinion mining. Morgan & Claypool Publishers. https://www.cs.uic.edu/~liub/FBS/SentimentAnalysis-and-OpinionMining.pdf

Luo, Z., Chen, J., Takiguchi, T., & Ariki, Y. (2017). Emotional voice conversion with adaptive scales F0 based on wavelet transform using limited amount of emotional data. In F. Lacerda, D. House, M. Heldner, J. Gustafson, S. Strömbergsson, & M. Włodarczak (Eds.), Interspeech 2017 (pp. 3399–3403). ISCA. http://www.me.cs.scitec.kobe-u.ac.jp/~takigu/pdf/2017/interspeech-luo.PDF

Malheiros, Y. (2014). Emotte: Uma ferramenta de análise de sentimentos para o Twitter. In XX Brazilian Symposium on Multimedia and the Web. Webmedia (pp. 62–65). Sociedade Brasileira de Computação. https://sol.sbc.org.br/index.php/webmedia_estendido/article/view/4932

Marques, R. O. (2019, 11 de junho). Projecto premiado que ajuda a prevenir suicídios passa por Braga. Meios e Publicidade. https://www.meiosepublicidade.pt/2019/06/projecto-premiado-ajuda-prevenir-suicidio-passa-braga-videos/.

Matsumae, A., Luo, R., Wang, Y., Nishimura, E., & Motomura, Y. (2020). Emotional data visualization for well-being, based on HRV analysis. In T. Ahram, W. Karwowski, A. Vergnano, F. Leali, & R. Taiar (Eds), International Conference on Intelligent Human Systems Integration (pp. 1270–1276). Springer. https://doi.org/10.1007/978-3-030-39512-4_194

McNair, D. M., Lon, M., & Droppelman, L. F. (1971). Manual for the profile of mood states. Educational and Industrial Testing Service.

Moise, C. (2017). Natural language processing in political Campaigns. In A. Dinu, P. Osenova, & C. Vertan (Eds.), Proceedings of the First Workshop on Language Technology for Digital Humanities in Central and (South-)Eastern Europe (pp. 39–43). Incoma.

Pasquali, L. (2017). Psicometria: Teoria dos testes na psicologia e na educação. Vozes.

Pasquinelli, M., & Joler, V. (2020). The Nooscope manifested: AI as instrument of knowledge extractivism. AI & society, 1–18. https://doi.org/10.1007/s00146-020-01097-6

Plutchik, R. (1980). A general psychoevolutionary theory of emotion. Academic Press.

Reason Why. (2019, 22 de maio). Code of Hope - Publicis España para Teléfono de la Esperanza [Vídeo]. YouTube. https://www.youtube.com/watch?v=AdSEEBfhPYw

Ringsquandl, M., & Petkovic, D. (2013). Analyzing political sentiment on Twitter. In M. desJardins & M. L. Littman (Eds.), 2013 AAAI Spring Symposium Series (pp. 40–47). AAAI.

Rolnik, S., & Guattari, F. (1986). Micropolítica: Cartografias do desejo. Vozes.

Silveira, S. A. (2015). Interações públicas, censura privada: O caso do Facebook. História, Ciências, Saúde – Manguinhos, 22, 1637–1651. http://doi.org/10.1590/S0104-59702015000500006

Spinoza, B. (2014). Carta 58 a Schuller. In R. Romano, N. Cunha, & J. Guinsburg (Eds.), Obra completa II (pp. 258–260). Perspectiva.

Stark, L. (2018). Algorithmic psychometrics and the scalable subject. Social Studies of Science, 48(2), 204–231. https://doi.org/10.1177/0306312718772094

Tiqqun (2020). The cybernetic hypothesis. Semiotext(e).

Watson, D., & Clark, A. (1994). Positive and negative affect schedule – Expanded form. The University of Iowa. https://doi.org/10.17077/48vt-m4t2

Published

2021-06-30

How to Cite

Melhado, F., & Rabot, J.-M. (2021). Sentiment Analysis: From Psychometrics to Psychopolitics. Comunicação E Sociedade, 39, 101–118. https://doi.org/10.17231/comsoc.39(2021).2797